TEAMS AND TEAM MANAGEMENT AND LEADERSHIP:TYPES, CHARACTERISTICS, AND DESIGN

1. TEAMS: TYPES, CHARACTERISTICS, AND DESIGN

Types of Teams

Sundstrom et al. (1990, p. 120) have defined work teams as ‘‘interdependent collections of individuals who share responsibility for specific outcomes for their organizations.’’ Teams can vary a great deal in the way they are designed, managed, and implemented. Various forms of teamwork have been proposed and applied, from temporary teams (e.g., ad hoc committees, quality improvement teams, project teams) to permanent teams (e.g., manufacturing crews, maintenance crews). Temporary teams are usually set up when some problem occurs or some change needs to be implemented and / or to better manage the change process. Teams also vary greatly in terms of the amount of autonomy and authority they have. For example, manager-led teams have responsibility only for the execution of work (Medsker and Campion 1997). On the other hand, self-managed teams can have a large amount of autonomy and decide on issues such as work organization and performance monitoring. Some- where in between, semiautonomous work groups will experience limited degrees of autonomy and decision making over such issues. Finally, teams vary significantly in terms of the task or the nature of work to be performed. Sundstrom et al. (1990) propose four broad categories of work team applications: (1) advice and involvement, (2) production and service, (3) projects and development, and (4) action and negotiation.

Characteristics of Teams

Lawler (1986) lists the following characteristics of work teams: membership, work area coverage, training, meetings, supervision, reward systems, decision-making responsibility, installation process, and size. Sundstrom et al. (1990) have proposed that work team effectiveness is dynamically inter- related with organizational context, boundaries and team development. Hackman (1987) has proposed a normative model of group effectiveness. The model identifies three process criteria: effort, knowl- edge, and the appropriateness of task performance strategies. Increases in these three criteria, given task configurations, should improve the overall effectiveness of the group. According to Hackman (1987), the basic levers to change the process criteria are group design, organizational context, and synergy.

Team Design

For the design of work groups, three different levels of criteria need to be considered. First, global issues on strategy selection need to be defined—that is, decisions regarding the appropriateness of teamwork for the situation at hand, what type of team would be most adequate, and the amount of authority / autonomy granted to the team need to be made. Second, the specifics of the group design and mechanics need to be decided upon, including matters of size and composition / membership, work area coverage or tasks, and coordination. Finally, in agreement with team members, issues related to the team performance and duration need to be defined. This includes reward systems, duration, and performance / effectiveness assessment, all issues that are determinant in making con- tinuation, change, or termination decisions throughout the life of the team.

Decisions at the strategic level are critical and difficult to make. The adequacy of teamwork for a given situation can be assessed through criteria depicted in Tables 3 and 4 in Medsker and Campion (2000) (Chapter 33 of this Handbook). As proposed by Medsker and Campion, Table 3 summarizes advantages and disadvantages of team design as compared to individual job design. Table 4 in Med- sker and Campion proposes a list of systematic questions for which affirmative answers support the use of teamwork for the situation at hand. The choice of the appropriate type of team depends on the application but also on the risks and opportunities offered by the different team configurations, as shown in Table 1. The next decision is on amount of authority / autonomy provided to the group. This decision is difficult to make and depends on other characteristics such as the organizational

Teams and Team Management and Leadership-0066

culture, the nature of the team’s tasks, the skills and knowledge of the team members, and the training received and to be received. Such a decision has important implications for management and em- ployee involvement, which will be addressed in Section 6.

Decisions at the tactical level, that is, the specifics of the group design and mechanics are usually easier to make and are negotiated with team members. This includes matters of size and composition/ membership, work area coverage or tasks, and coordination mechanisms. For many teams, the optimal size is difficult to determine. In fact, a variety of factors may affect team size. Obviously the primary factor is the size and scope of a required project or set of tasks. However, several other factors can influence team size (it should be noted that all factors are not necessarily applicable to all types of teams). Factors affecting team size include:

• Amount of work to be done

• Amount of time available to do the work

• Amount of work any one person can do in the available time

• Differentiation of tasks to be performed in sequence

• Number of integrated tasks required

• Balancing of tasks assignments

• Cycle time required

• Variety of skills, competences, knowledge bases required

• Need for reserve team members

• Technological capabilities

Finally, at the third level, decisions regarding team performance and duration should be negotiated and made prior to engaging teamwork. Section 5 provides a comprehensive, structured list of variables affecting and / or defining team performance. Such characteristics can be used to develop a system to measure and monitor team performance over time.

As mentioned above, teams are widely used in today’s organizational environment, with increased global competition and a more demanding workforce (Katzenbach and Smith 1993). The next section describes two important current applications of teamwork.

Comments

Popular posts from this blog

DUALITY THEORY:THE ESSENCE OF DUALITY THEORY

NETWORK OPTIMIZATION MODELS:THE MINIMUM SPANNING TREE PROBLEM

INTEGER PROGRAMMING:THE BRANCH-AND-CUT APPROACH TO SOLVING BIP PROBLEMS