THE FACTORY OF THE FUTURE:NEW METHODS FOR PLANNING AND OPERATING TRANSFORMABLE STRUCTURES

NEW METHODS FOR PLANNING AND OPERATING TRANSFORMABLE STRUCTURES

In the future, companies will need new planning methods to increase their transformability and adaptability to a changing business environment. These methods and tools will speed up processes but also increase performance quality and integrate existing methods. The following four methods allow to the transformability of an enterprise to be increased. They differ in the extent of their market penetration, their market maturity, and their operative range. All methods are based on the new corporate structure and attempt to improve the related processes (see Figure 11).

Process Management through Process Modeling, Evaluation, and Monitoring

If future enterprises are no longer structured according to Tayloristic functions but focus on added value, then new methods and procedures will be required for mapping and evaluating these processes.

To achieve increased transformability, it is necessary to check the process efficiency continuously with regard to the current speed of change. If processes are to be successfully and comprehensively

The Factory of the Future-0074

The Factory of the Future-0075

managed, it is not sufficient to map the process once but rather use an integrated and holistic approach. It is necessary that process modeling be understood by all those involved in the process. At the process evaluation and optimization stage, the structures of the process model are evaluated and optimized from different points of view before being passed on to the continuous process monitoring stage (see Figure 12).

A great number of modeling tools for process modeling are currently available on the market and applied within companies. These tools all have the capacity to map the corporate process flow using predefined process building blocks. Depending on the necessary degree of specification, the processes can be depicted in greater detail over several levels. Each process module can be equipped with features such as frequency, duration, and specific conditions to enable evaluation of the work flow as a whole. In addition, the process steps can be linked through further modules such as required resources and required and created documents. However, none of the tools can provide specific instructions as to the extent of the models’ detail. The specification level depends, for the most part, on the interest of the persons concerned, including both the partners in the corporate network and the semiautonomous organizational units within the individual companies. In any case, the interfaces between the organizational units and the network partners must be adequately specified so that the required results to be delivered at the interfaces are known. However, a detailed description of in- dividual activities in the organizational units is not necessary.

The evaluation and optimization of processes can be based on the performance results provided at the interfaces. Performance results means primarily to the expected quality, agreed deadlines, quantities and prices, and maximal costs. So that the process efficiency and the process changes with regard to the provided results can be evaluated, the immediate process figures have to be aggregated and evaluated in terms of the figures of other systems. This leads to new cost tasks. An important leverage point in this respect is the practical use of process cost calculation and its integration into process management(von Briel and Sihn 1997).

At the monitoring stage, it is necessary to collect up-to-date process figures. Based on these key figures, cost variance analyses can be carried out that allow the relevant discrepancies between desired and actual performance to be determined and illustrated by means of intelligent search and filter functions. The relevant figures are then united and aggregated to create global performance charac- teristics. Due to the locally distributed data and their heterogeneous origins, monitoring processes that encompass several companies is problematic. To solve this problem, the Fraunhofer Institute developed the supply chain information system (SCIS), which is based on standard software com- ponents and uses the Internet to enable the continuous monitoring of inventory, quality, and delivery deadlines in a multienterprise supply chain. The person responsible for the product stores the data of each supplier separately in a database. This product manager is therefore in a position to identify and mark critical parts on the basis of objective criteria (ABC analyses, XYZ analyses) and practical experience. It is then possible to determine dates (e.g., inventory at a certain point in time) for critical parts and carry out time analyses (e.g., deadline analyses for a certain period of time, trend analyses). These analyses are used to identify logistical bottlenecks in the supply chain. Moreover, the analyses can be passed on to the supply chain partners, thus maintaining the information flow within the supply chain.

The Factory of the Future-0076

Integrated Simulation Based on Distributed Models and Generic Model Building Blocks

Simulation is another important method for increasing the transformability of systems. With the help of simulation, production systems can be evaluated not only during standard operation but during start-up and fluctuation periods. Simulation is therefore an ideal planning instrument for a turbulent environment characterized by specific phenomena. However, in practice, the use of simulation is increasing only slowly due to the need for accompanying high-performance computer systems and reservations regarding the creation of simulation models, pooling of knowhow, and maintenance of the models. The main problem remains the nonrecurring creation of simulation modules and the need to create a problem-specific overall model.

Two simulation methods can be used to speed up the planning process. The first method generates company- and industry-specific modules that can be put together to create individual simulation models. This is achieved by simply changing the parameters without having to build a completely new planning model. The modules can be continuously created until the user no longer needs to adapt the individual modules but merely has to modify the parameters of the overall model (see Figure 13).

The model of a production system developed by the Fraunhofer Institute shows that two basic building blocks suffice to create a structured model of 10 different types and 25 pieces of machinery. Within two weeks, 25 variations of the production system could be analyzed in collaboration with the production system staff.

The second method enhances the creation of simulation models by allowing distributed models to be built that interact through a common platform or protocol. Thus, various problem-specific tools can be put into action so that there is no need to apply a single tool for all problems. Moreover, the modeling effort and maintenance costs are shared by all participants. Accordingly, every semiauton- omous corporate unit and partner in the corporate network can maintain and adapt its own model. On the other hand, because a common platform ensures that the models are consistent and executable, corporate management doesn’t lose control over the overall model. The introduction of HLA com- munication standards for an increasing number of simulation systems fulfills the principal system requirements for networked simulation.

Participative Planning in the Factory of the Future

The participative planning method is used to reduce the number of interfaces that arise when a complex planning task is solved—that is, one that involves many planning partners and their indi- vidual knowhow. It also improves information flow at the interfaces, allows planning processes to be carried out simultaneously, and prevents double work in the form of repeated data input and data transfer. Participative planning is based on the theory that cooperation considerably increases effi- ciency in finding solutions for complex problems.

The basic principle of participative planning is not new. It was used in factory and layout planning long before the introduction of computer assistance. Previously, team meetings used paper or metal

The Factory of the Future-0077

components to represent machinery or production areas. These items could be fastened or glued to the factory’s layout plan. This procedure has remained more or less the same in participative planning, the only difference being that interactive factory planning uses virtual elements that exist solely in the computer model and do not need to be glued or pinned. These objects not only possess proper geometrical characteristics but also include additional information concerning object values.

The basic tool of participative planning, the interactive planning table, is based on an idea from the Institute for Hygiene and Applied Physiology and the Institute for Design and Construction at the ETH Zurich. A projector is used to project a 2D image of the planning area via a mirror onto an ordinary table. Simultaneously, a 3D model of the planning area is presented on the wall. The same mirror returns the picture on the table to a camera mounted beside the projector. Thus, feedback on the changes performed on the table is made available. The interactive mechanism of the planning table works by means of metal building bricks with reflective upper surfaces that make it possible for the camera to register the movements of the bricks. Two main forms of interaction exist. One

uses one of two brick sizes and the other, the classical way, uses a mouse and keyboard (see Figure 14).

The interactive planning method leads to a significant reduction of planning time while maintain- ing planning quality. Accordingly, this planning model especially applies to planning cases in which the highest possible planning quality is imperative due to low profit margins and high investment costs, when several partners with different knowhow levels participate in the planning and the plan- ning takes place under high time pressure. Given the increased speed of change, this will apply to an increasing number of planning cases.

The Integrated Evaluation Tool for Companies

Many enterprises argue that decisions must affect the revenue figures more quickly and in turn influence the corporate profit situation and business value. Hardly any company data are more con- troversial than the accounting figures. The main criticism of these figures is that for the most part, they are based on past results. Moreover, because the results are aggregated and based on many different accounting parameters, it is not possible to derive clear-cut measures in due time. This means there is too much time between the occurrence and recognition of weak spots in the corporate revenue figures.

However, an integrated evaluation tool has to include accounting figures, which form the basis for corporate decision making and also determine the key data that allow changes to be registered before they take effect in accounting. The balanced scorecard (Kaplan and Norton 1996), a method developed for practical use by Kaplan, provides an easy-to-understand method that enables accounting figures to be combined with other process data (see Figure 15).

The balanced scorecard identifies vital figures for answering the following questions:

The Factory of the Future-0078

The Factory of the Future-0079

• How does the current profit situation of the company compare to the market situation?

• How is the company’s market attractiveness rated by its customers?

• What is the current situation in the company’s value-adding processes?

• What improvements can be made in corporate processes and products, and what is the innovative power of the company?

This tool helps a company recognize changes in the corporate situation at an early stage and initiate appropriate actions due to the depth and variety of the questions and their differing time horizon. The balanced scorecard thus serves as an early warning system for a company so that it can actively respond to market changes. The tool also allows the current profit and market situation of the company to be taken into consideration. Thus, the balanced scorecard helps the company avoid the short-range view of the profit situation and expand it to include vital aspects of corporate man- agement.

Comments

Popular posts from this blog

MATERIAL-HANDLING SYSTEMS:STORAGE SYSTEMS

NETWORK OPTIMIZATION MODELS:THE MINIMUM SPANNING TREE PROBLEM

DUALITY THEORY:THE ESSENCE OF DUALITY THEORY