Overview of the Operations Research Modeling Approach:DEFINING THE PROBLEM AND GATHERING DATA

DEFINING THE PROBLEM AND GATHERING DATA

In contrast to textbook examples, most practical problems encountered by OR teams are initially described to them in a vague, imprecise way. Therefore, the first order of business is to study the relevant system and develop a well-defined statement of the problem to be considered. This includes determining such things as the appropriate objectives, constraints on what can be done, interrelationships between the area to be studied and othe

areas of the organization, possible alternative courses of action, time limits for making a decision, and so on. This process of problem definition is a crucial one because it greatly affects how relevant the conclusions of the study will be. It is difficult to extract a “right” answer from the “wrong” problem!

The first thing to recognize is that an OR team normally works in an advisory capac- ity. The team members are not just given a problem and told to solve it however they see fit. Instead, they advise management (often one key decision maker). The team performs a detailed technical analysis of the problem and then presents recommendations to manage- ment. Frequently, the report to management will identify a number of alternatives that are particularly attractive under different assumptions or over a different range of values of some policy parameter that can be evaluated only by management (e.g., the trade-off between cost and benefits). Management evaluates the study and its recommendations, takes into account a variety of intangible factors, and makes the final decision based on its best judgment. Consequently, it is vital for the OR team to get on the same wavelength as management, including identifying the “right” problem from management’s viewpoint, and to build the support of management for the course that the study is taking.

Ascertaining the appropriate objectives is a very important aspect of problem defini- tion. To do this, it is necessary first to identify the member (or members) of management who actually will be making the decisions concerning the system under study and then to probe into this individual’s thinking regarding the pertinent objectives. (Involving the deci- sion maker from the outset also is essential to build her or his support for the implementa- tion of the study.)

By its nature, OR is concerned with the welfare of the entire organization rather than that of only certain of its components. An OR study seeks solutions that are optimal for the overall organization rather than suboptimal solutions that are best for only one component. Therefore, the objectives that are formulated ideally should be those of the entire organiza- tion. However, this is not always convenient. Many problems primarily concern only a por- tion of the organization, so the analysis would become unwieldy if the stated objectives were too general and if explicit consideration were given to all side effects on the rest of the organization. Instead, the objectives used in the study should be as specific as they can be while still encompassing the main goals of the decision maker and maintaining a rea- sonable degree of consistency with the higher-level objectives of the organization.

For profit-making organizations, one possible approach to circumventing the problem of suboptimization is to use long-run profit maximization (considering the time value of money) as the sole objective. The adjective long-run indicates that this objective provides the flexibility to consider activities that do not translate into profits immediately (e.g., research and development projects) but need to do so eventually in order to be worth- while. This approach has considerable merit. This objective is specific enough to be used conveniently, and yet it seems to be broad enough to encompass the basic goal of profit- making organizations. In fact, some people believe that all other legitimate objectives can be translated into this one.

However, in actual practice, many profit-making organizations do not use this approach. A number of studies of U.S. corporations have found that management tends to adopt the goal of satisfactory profits, combined with other objectives, instead of focusing on long-run profit maximization. Typically, some of these other objectives might be to maintain stable profits, increase (or maintain) one’s share of the market, provide for prod- uct diversification, maintain stable prices, improve worker morale, maintain family control of the business, and increase company prestige. Fulfilling these objectives might achieve long-run profit maximization, but the relationship may be sufficiently obscure that it may not be convenient to incorporate them all into this one objective.

Furthermore, there are additional considerations involving social responsibilities that are distinct from the profit motive. The five parties generally affected by a business firm located in a single country are (1) the owners (stockholders, etc.), who desire profits (divi- dends, stock appreciation, and so on); (2) the employees, who desire steady employment at reasonable wages; (3) the customers, who desire a reliable product at a reasonable price;

(4) the suppliers, who desire integrity and a reasonable selling price for their goods; and

(5) the government and hence the nation, which desire payment of fair taxes and consider- ation of the national interest. All five parties make essential contributions to the firm, and the firm should not be viewed as the exclusive servant of any one party for the exploitation of others. By the same token, international corporations acquire additional obligations to follow socially responsible practices. Therefore, while granting that management’s prime responsibility is to make profits (which ultimately benefits all five parties), we note that its broader social responsibilities also must be recognized.

OR teams typically spend a surprisingly large amount of time gathering relevant data about the problem. Much data usually are needed both to gain an accurate understanding of the problem and to provide the needed input for the mathematical model being formulated in the next phase of study. Frequently, much of the needed data will not be available when the study begins, either because the information never has been kept or because what was kept is outdated or in the wrong form. Therefore, it often is necessary to install a new computer-based management information system to collect the necessary data on an ongo- ing basis and in the needed form. The OR team normally needs to enlist the assistance of various other key individuals in the organization, including information technology (IT) specialists, to track down all the vital data. Even with this effort, much of the data may be quite “soft,” i.e., rough estimates based only on educated guesses. Typically, an OR team will spend considerable time trying to improve the precision of the data and then will make do with the best that can be obtained.

With the widespread use of databases and the explosive growth in their sizes in recent years, OR teams now frequently find that their biggest data problem is not that too little is available but that there is too much data. There may be thousands of sources of data, and the total amount of data may be measured in gigabytes or even terabytes. In this environ- ment, locating the particularly relevant data and identifying the interesting patterns in these data can become an overwhelming task. One of the newer tools of OR teams is a technique called data mining that addresses this problem. Data mining methods search large databases for interesting patterns that may lead to useful decisions. (Selected Refer- ence 6 at the end of the chapter provides further background about data mining.)

Example. In the late 1990s, full-service financial services firms came under assault from electronic brokerage firms offering extremely low trading costs. Merrill Lynch responded by conducting a major OR study that led to a complete overhaul in how it charged for its services, ranging from a full-service asset-based option (charge a fixed percentage of the value of the assets held rather than for individual trades) to a low-cost option for clients wishing to invest online directly. Data collection and processing played a key role in the study. To analyze the impact of individual client behavior in response to different options, the team needed to assemble a comprehensive 200 gigabyte client database involving 5 million clients, 10 million accounts, 100 million trade records, and 250 million ledger records. This required merging, reconciling, filtering, and cleaning data from numerous production databases. The adoption of the recommendations of the study led to a one-year increase of nearly $50 billion in client assets held and nearly $80 million more revenue. (Selected Reference A2 describes this study in detail. Also see Selected References A1, A10, and A14 for other examples where data collection and processing played a particularly key role in an award-winning OR study.)

Comments

Popular posts from this blog

DUALITY THEORY:THE ESSENCE OF DUALITY THEORY

NETWORK OPTIMIZATION MODELS:THE MINIMUM SPANNING TREE PROBLEM

INTEGER PROGRAMMING:THE BRANCH-AND-CUT APPROACH TO SOLVING BIP PROBLEMS