Overview of the Operations Research Modeling Approach:TESTING THE MODEL

TESTING THE MODEL

Developing a large mathematical model is analogous in some ways to developing a large computer program. When the first version of the computer program is completed, it inevitably contains many bugs. The program must be thoroughly tested to try to find and correct as many bugs as possible. Eventually, after a long succession of improved pro- grams, the programmer (or programming team) concludes that the current program now is generally giving reasonably valid results. Although some minor bugs undoubtedly remain hidden in the program (and may never be detected), the major bugs have been sufficiently eliminated that the program now can be reliably used.

Similarly, the first version of a large mathematical model inevitably contains many flaws. Some relevant factors or interrelationships undoubtedly have not been incorporated into the model, and some parameters undoubtedly have not been estimated correctly. This is inevitable, given the difficulty of communicating and understanding all the aspects and sub- tleties of a complex operational problem as well as the difficulty of collecting reliable data. Therefore, before you use the model, it must be thoroughly tested to try to identify and cor- rect as many flaws as possible. Eventually, after a long succession of improved models, the OR team concludes that the current model now is giving reasonably valid results. Although some minor flaws undoubtedly remain hidden in the model (and may never be detected), the major flaws have been sufficiently eliminated so that the model now can be reliably used.

This process of testing and improving a model to increase its validity is commonly referred to as model validation.

It is difficult to describe how model validation is done, because the process depends greatly on the nature of the problem being considered and the model being used. However, we make a few general comments, and then we give an example. (See Selected Reference 3 for a detailed discussion.)

Since the OR team may spend months developing all the detailed pieces of the model, it is easy to “lose the forest for the trees.” Therefore, after the details (“the trees”) of the ini- tial version of the model are completed, a good way to begin model validation is to take a fresh look at the overall model (“the forest”) to check for obvious errors or oversights. The group doing this review preferably should include at least one individual who did not par- ticipate in the formulation of the model. Reexamining the definition of the problem and comparing it with the model may help to reveal mistakes. It is also useful to make sure that all the mathematical expressions are dimensionally consistent in the units used. Additional insight into the validity of the model can sometimes be obtained by varying the values of the parameters and/or the decision variables and checking to see whether the output from the model behaves in a plausible manner. This is often especially revealing when the para- meters or variables are assigned extreme values near their maxima or minima.

A more systematic approach to testing the model is to use a retrospective test. When it is applicable, this test involves using historical data to reconstruct the past and then determining how well the model and the resulting solution would have performed if they had been used. Comparing the effectiveness of this hypothetical performance with what actually happened then indicates whether using this model tends to yield a significant improvement over current practice. It may also indicate areas where the model has short- comings and requires modifications. Furthermore, by using alternative solutions from the model and estimating their hypothetical historical performances, considerable evidence can be gathered regarding how well the model predicts the relative effects of alternative courses of actions.

On the other hand, a disadvantage of retrospective testing is that it uses the same data that guided the formulation of the model. The crucial question is whether the past is truly representative of the future. If it is not, then the model might perform quite differently in the future than it would have in the past.

To circumvent this disadvantage of retrospective testing, it is sometimes useful to further test the model by continuing the status quo temporarily. This provides new data that were not available when the model was constructed. These data are then used in the same ways as those described here to evaluate the model.

Documenting the process used for model validation is important. This helps to increase confidence in the model for subsequent users. Furthermore, if concerns arise in the future about the model, this documentation will be helpful in diagnosing where problems may lie.

Example. Consider an OR study done for IBM to integrate its national network of spare- parts inventories to improve service support for IBM’s customers. This study resulted in a new inventory system that improved customer service while reducing the value of IBM’s inventories by over $250 million and saving an additional $20 million per year through improved operational efficiency. A particularly interesting aspect of the model validation phase of this study was the way that future users of the inventory system were incorporated into the testing process. Because these future users (IBM managers in functional areas responsible for implementation of the inventory system) were skeptical about the system being developed, representatives were appointed to a user team to serve as advisers to the OR team. After a preliminary version of the new system had been developed (based on a multiechelon inventory model), a preimplementation test of the system was conducted. Extensive feedback from the user team led to major improvements in the proposed system. (Selected Reference A5 describes this study in detail.)

Comments

Popular posts from this blog

DUALITY THEORY:THE ESSENCE OF DUALITY THEORY

NETWORK OPTIMIZATION MODELS:THE MINIMUM SPANNING TREE PROBLEM

INTEGER PROGRAMMING:THE BRANCH-AND-CUT APPROACH TO SOLVING BIP PROBLEMS